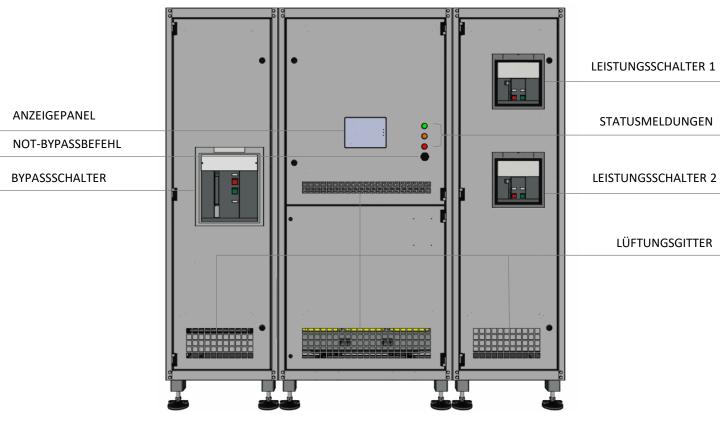
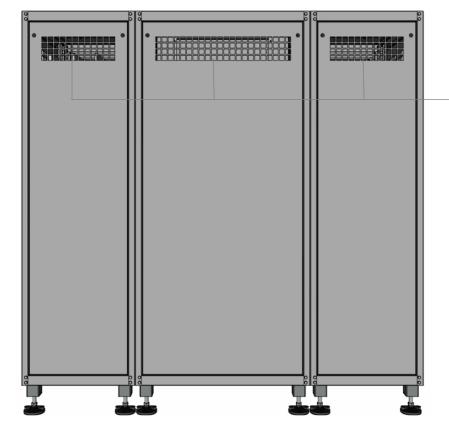

EFFIZIENZFILTER

mit zwei Leistungsschaltern

Typ:

EF125_L160_16_2




TECHNISCHE DATEN UND MASSBLATT

LÜFTUNGSGITTER

Nennspannung:	400V AC
Steuerspannung:	24V DC
Nennfrequenz :	50Hz
Betriebsspannung:	PH-N 235V AC - PH-PH 407V AC
Schutzklasse :	Klasse 1
Schutzart :	IP30/Typ 1
Gehäuse / Farbe :	Blech lackiert / RAL7042 Grau
Gewicht :	1220kg
Maße B/H/T:	1950x1960x860 mm

Normen:

IEC/EN 61439-1

IEC/EN 61439-2

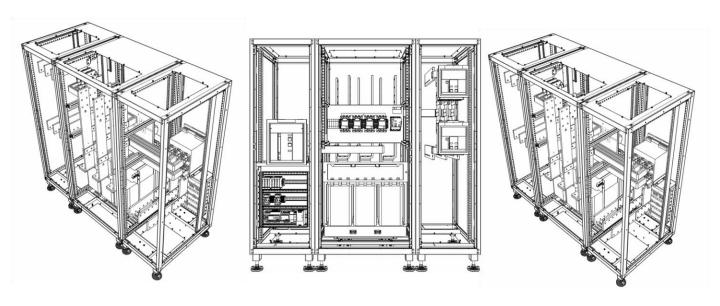
IEC/EN61000-6-4:2007+A1:2011

IEC EN 61000-3-2:2006+A1:2009+A2:2009

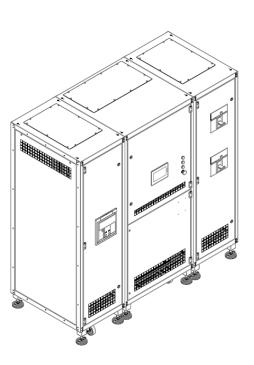
IEC EN 61000-3-3:2016

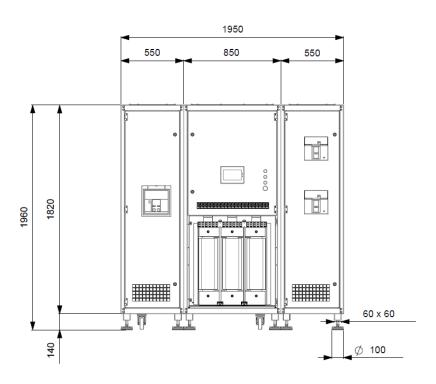
IEC EN61000-6-2:2005+AC:2005

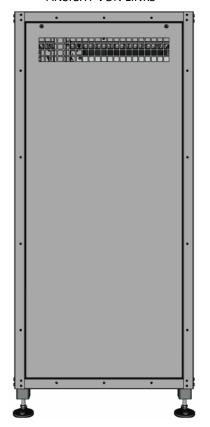
<u>UL/CSA Norm : UL1012 / CSA C22. 1 Nr. 107.1</u>

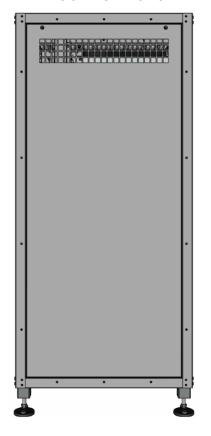

Umgebungsbedingung:

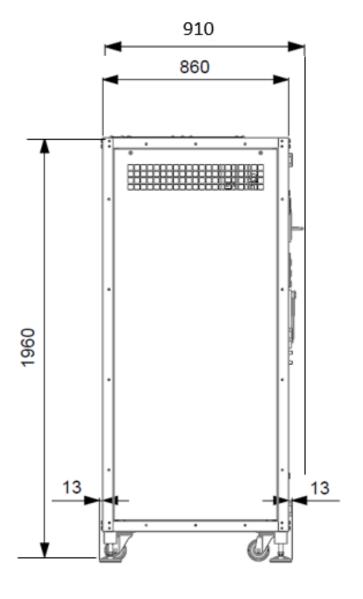
Betriebstemperatur:	-5°C bis +40°C
<u>Lagertemperatur</u> :	-10°C bis +65°C
Einsatzbereich:	Innenbereich
Relative Luftfeuchte:	0%97%
Systemkühlung:	natürlich belüftet





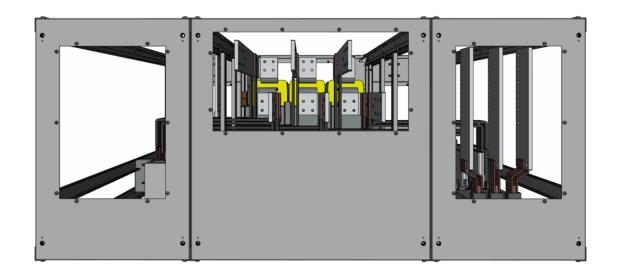


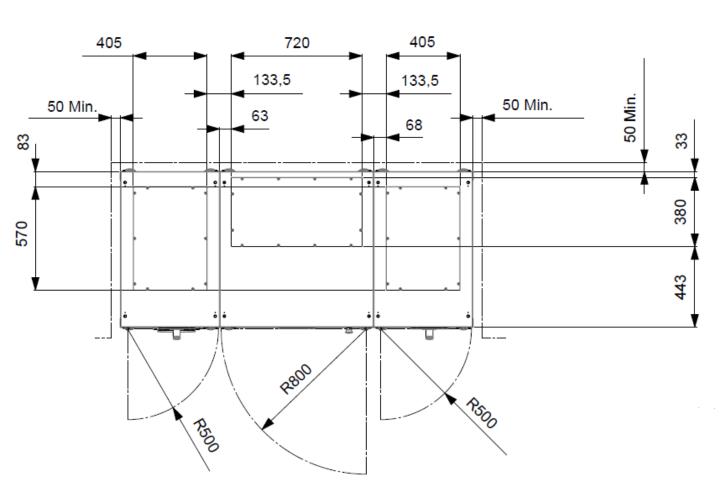


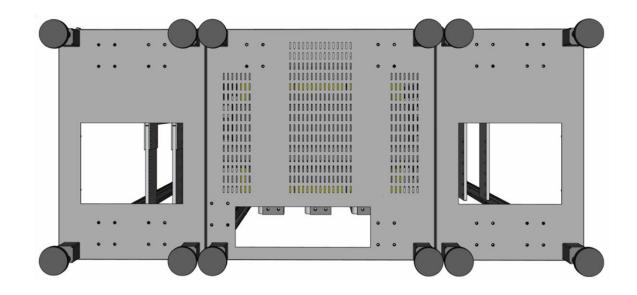


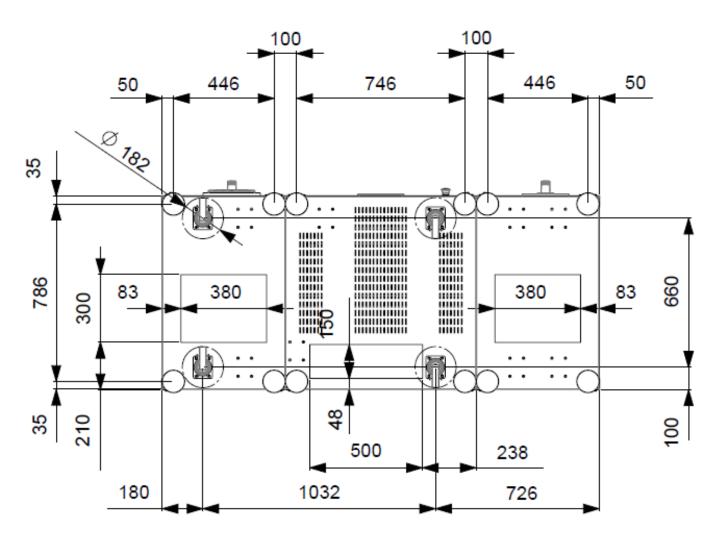
ANSICHT VON LINKS

ANSICHT VON RECHTS

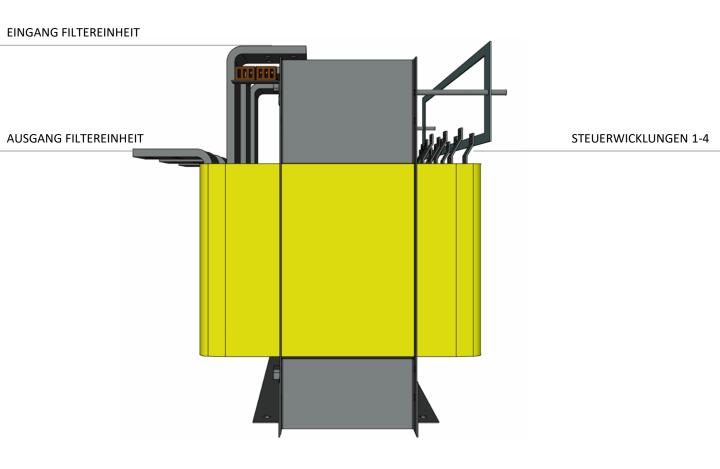


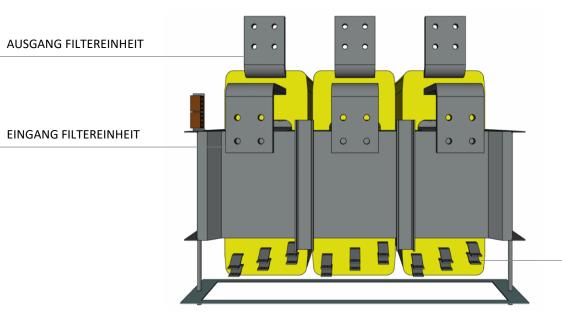




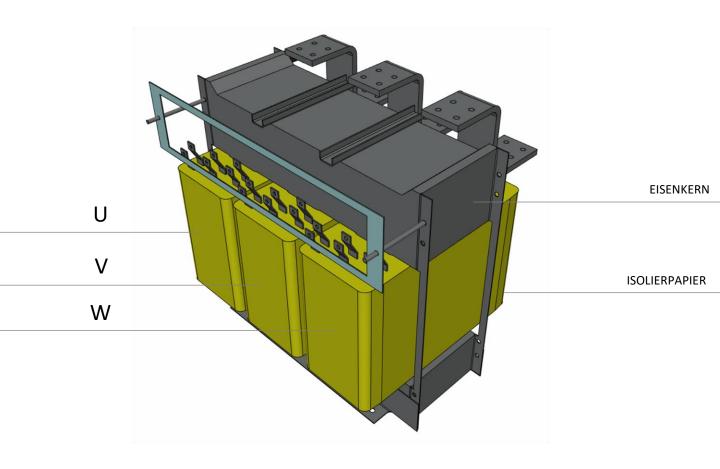


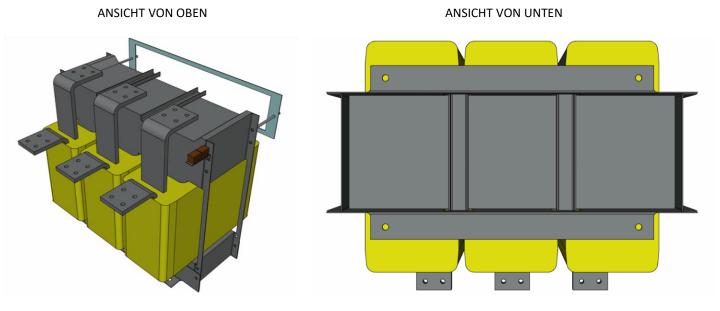
FILTEREINHEIT MIT BYPASS VERSCHIENUNG


Anschluss:	3Ph / PE
Nennspannung:	400V AC
Nennfrequenz:	50 Hz
Nennstrom:	1250A
Bypass-Sammelschiene:	1600A
lcw:	50kA
Norm:	EC60076-1 IEC60076-11
Vcc:	3,8%
Isolierung: Vakuum-Dru	uck-Imprägnierung (VPI)
Kühlart :	natürlich (AN)
Haupt-Wicklung:	<u>Dreieck offen</u>
Steuer-Wicklung:	<u>Dreieck offen</u>
Schaltgruppe:	Dd0
Isolationsklasse Wicklung:	<u> </u>
<u>Isolationsfestigkeit:</u>	1,1kV
Primär Wicklung Widerstand (20°	<u>C) 49mΩ</u>
Sekundär Wicklung Widerstand (2	<u>20°C) 0,22mΩ</u>
Prüfspannung:	3kV
Temperaturüberwachung: Warı	nung 110°C / Alarm 130°C
Spannungsfall Stufe 1-4:	ca. 9 / 13 / 16 /20 Volt
<u>Leerlaufverluste</u> :	550W
Kupferverluste:	2200W
Sonstige Verluste :	100W
Gesamtverlust (bei Vollast):	2850W
Nennleistung der Anlage (PF-0,99	5): 823kW
Wirkungsgrad (Bei Nennleistung): 99,6%

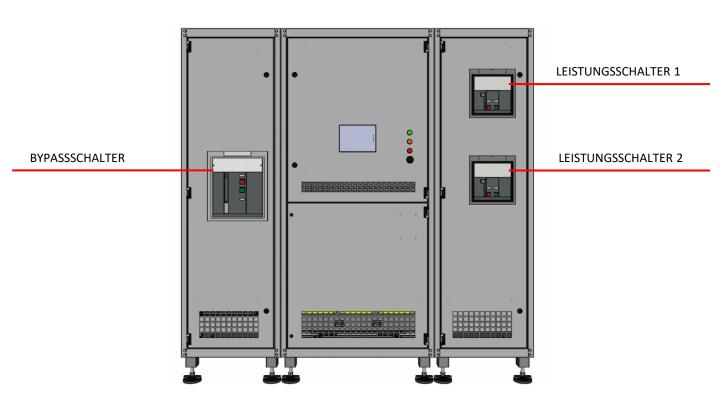

Leistungsebene 1250A-1850A

Leistungsebene 1230A-1630A				
Filter Belastung				
822 kW / 1250A				
855 kW / 1300A Bleibt der Filter zugeschaltet (Wirkung)				
887 kW / 1350A				
901 kW / 1370A	7 Std 19 min			
914 kW / 1390A	1 Std 50 min			
927 kW / 1410A	49 min			
940 kW / 1430A	27 min			
953 kW / 1450A	18 min			
986 kW / 1500A	8 min	goht noch dieser Zeit		
1019 kW / 1550A	5 min	geht nach dieser Zeit		
1052 kW / 1600A	3 min	in den BYPASS		
1085 kW / 1650A	2 min			
1118 KW / 1700A	1 min 26 sec			
1150 kW / 1750A	1 min 6 sec			
1183 kW / 1800A	52 sec			
1216 kW / 1850A	42sec			





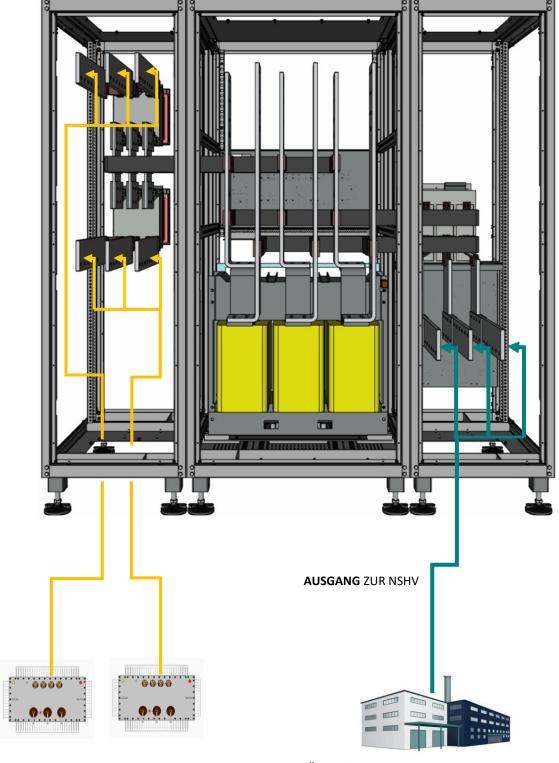
STEUERWICKLUNGEN 1-4



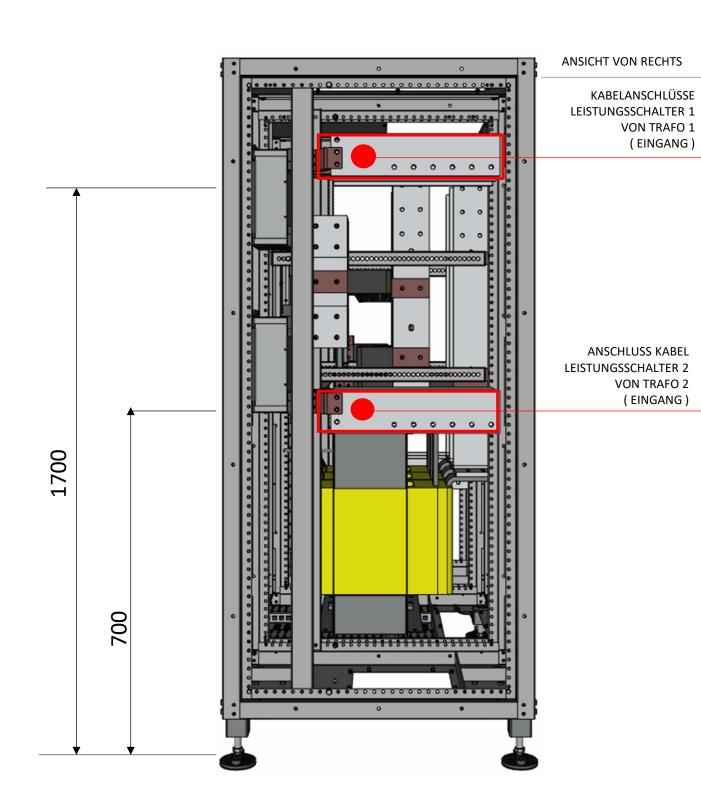
Technische Daten Leistungsschalter:

Typ: 2x	ABB XT7S M 1600 Ekip Dip LS/I In1600A 3p FF
Bemessungsstrom:	1600A
Auslöser :	Ekip Dip LS/I
lcu:	50kA

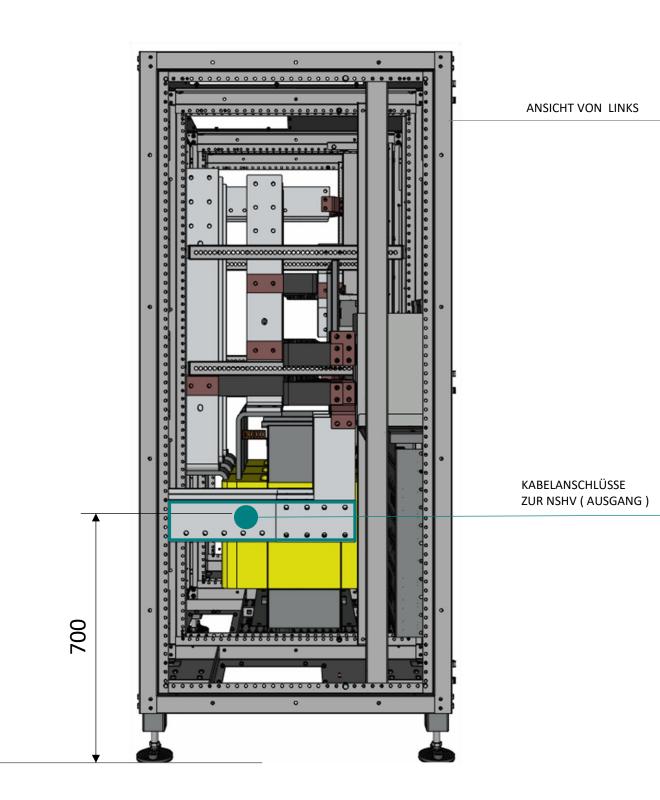
Technische Daten Bypass-Schalter:

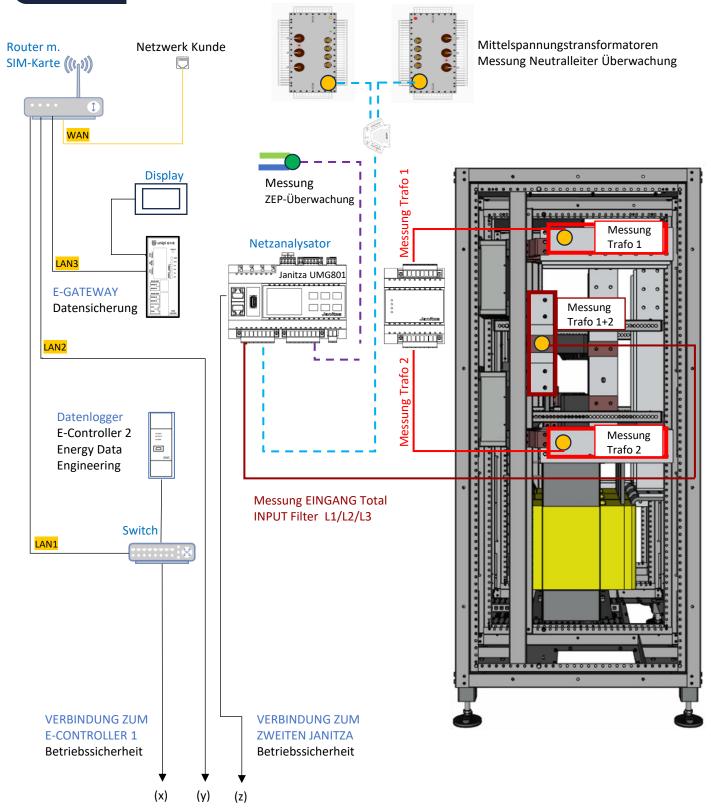

Typ:	ABB E1.2B/MS 1600 3p FF
Bemessungsstrom:	1600A
Betätigung:	Motorantrieb
lcw:	42kA

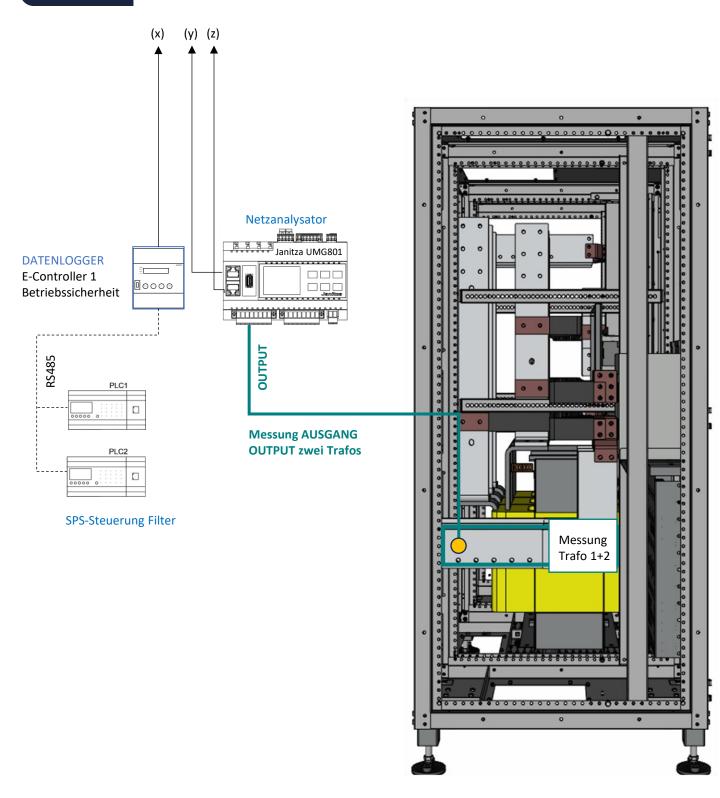
ANSCHLUSSVARIANTEN ZUGANG/ABGANG



Hier gezeigt am Bsp. Zu- und Abgang von unten. Die Leitungseinführung kann auch von oben erfolgen.







Netzanalysator Janitza UMG 801 Filter Ein- und Ausgang

- Umess 3/4 Leiter System geerdet 480/830V AC (IEC)
- Versorgungsspannung 24-48V DC, PELV
- Abtastfrequenz 50/60H 51,2kHz (V) / 25,6 kHz (A)
- > Oberschwingung V/A 1.-127. / 1.-63.
- Verzerrungsfaktor THD-U / THD-I in %
- Kurz- / Langzeitflicker
- Transienten
- Kurzzeitunterbrechungen

Allgemeines

- Hutschienenmessgerät mit den Abmessungen
 B: 144 mm x H: 90 mm x T: 76 mm.
- Montage auf Hutschiene 35 mm (Typen siehe Kap. "Technische Daten").
- · TFT-Display.
- Bedienung über 6 Tasten.
- Passwortschutz.
- · Anschluss über Schraub- und Federzugklemmen.
- 4 Spannungsmesseingänge (1000 V, CATIII).
- 2x 4 Strommesseingänge (über Stromwandler).
- RS485-Schnittstelle (Modbus RTU, mit DIP-Schalter für die Terminierung).
- 2x Ethernet-Schnittstelle (RJ45).
- 4 digitale Eingänge.
- 4 digitale Ausgänge.
- · 1 analoger Ausgang (galvanisch getrennt).
- 4 Multifunktionskanäle für die Verwendung als Differenzstrom- oder Temperatur-Messeingänge und zusätzliche Strommesskanäle (mA).
- Uhr und Batterie.
- Optionale Fernanzeige (RD96) f
 ür eine komfortable Ger
 ätebedienung.
- Erweiterbar mit Strommessmodulen und digitalen Eingangsmodulen über Übergabemodule (siehe Nutzungsinformationen zu den jeweiligen Modulen).

Messunsicherheit

- Wirkenergie, Messunsicherheit Klasse 0,2 S für ./5 A Wandler.
- Wirkenergie, Messunsicherheit Klasse 0,5 S f
 ür ./1 A Wandler.
- Wirkenergie, Messunsicherheit Klasse 0,5 S f
 ür ./50 mA Wandler.
- Blindenergie, Klasse 1.

Messung

- · Messung in TN-, TT- und IT-Netzen.
- Messung in Netzen mit Nennspannungen bis L-L 830 V und L-N 480 V.
- Messbereich Spannung 720 V_{eff L-N};
 1000 V_{eff L-L}; 100 V_{N-PE}.
- Messbereich Strom 0,005 .. 6 Aeff.
- · Echte Effektivwertmessung (TRMS).
- Kontinuierliche Abtastung der Spannungs- und Strommesseingänge.
- Frequenzbereich der Grundschwingung 40 Hz., 70 Hz.
- Spannung: 1..127 Harmonische (U_{L-N} und U_{L-L}) und Zwischenharmonische (U_{L-N}).
- · Strom: 1..63 Harmonische.
- Differenzstrom nach IEC/TR 60755 (2008-01),
 Typ A + Typ B und B+.

Technische Daten Rogowski-Spule und zugehöriger Integrator

Technische Daten Rogowski-Spule:

<u>Typ</u> :	MBS FASK 150
<u>Übersetzung :</u>	100mV/kA @ 50 Hz
<u>Übersetzungsfehler :</u>	< 0,5% an der zentralen Position am Verschluss @ 25°C
Phasenfehler:	≤ 0,5° (30 Winkelminuten)
Spulenwiderstand:	liegt zwischen 100 und 250 Ohm
<u>Temperaturkoeffizient :</u>	40 0ppm/K
Positionsfehler:	± 1 % maximal
<u>Linearitätsfehler:</u>	± 0,2 % maximal des Messwertes
Bandbreite:	1 Hz bis 100 kHz (-3db)
Zertifizierungen :	CE / EMC EN 61326-1 :2006

Technische Daten Integrator:

<u>Typ</u> :	MBS ROI-3
Anzahl Phasenanschlüsse:	3
Bemessungsausgangssignal:	1A AC rms
Maximum Ausgangssignal (overload):	1,5A AC rms
Primärbemessungsströme (A):	1000; 2000; 4000
Übersetzungsgenauigkeit: 0,5%; bei 1% (≥10A) bis 110% des I	<u>Primärbemessungsstromes</u>
Bandbreite:	30 Hz bis 5 kHz
Maximalbürde pro Phase :	0,5 Ω
Ausgang bei 0A (zero drift):	≤ 0,01 A
Temperaturkoeffizient :	200ppm/K

Kommunikation E-Controller HIGECO GWC 4DIN und GWC 2DIN

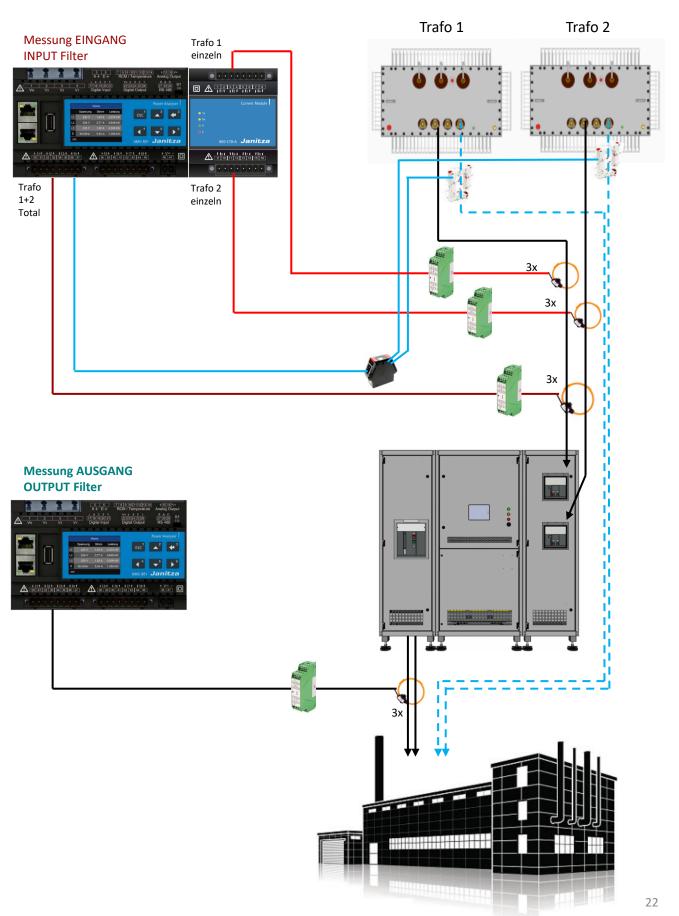
Die Aufzeichnung und Datenkommunikation erfolgt über die Anlagenkomponente E-Controller von HIGECO (GWC 4DIN und GWC 2DIN) . Die Geräte ermöglichen dem Nutzer die Interaktion mit dem LIVARSA System.

Router Teltonika RUT901

Der LIVARSA Effizienzfilter ist mit dem Router Teltonika RUT901 ausgerüstet, der auch als 4G-Dual-SIM-Modem fungiert. Im SIM1 Steckplatz ist die firmeneigene Daten-SIM von LIVARSA integriert. Dies ermöglicht den Fernzugriff auf das LIVARSA System und dessen Konfiguration.

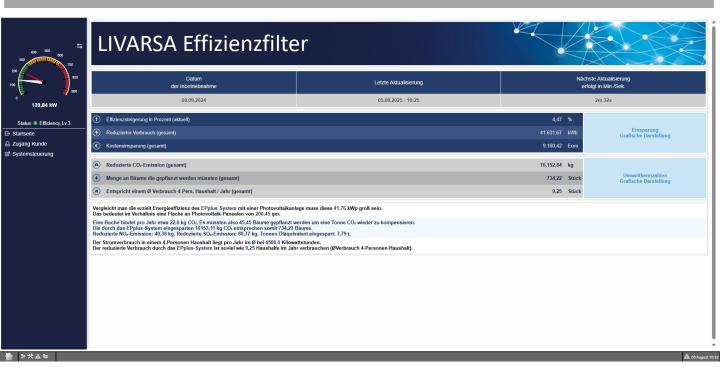
Kommunikation E-GATEWAY

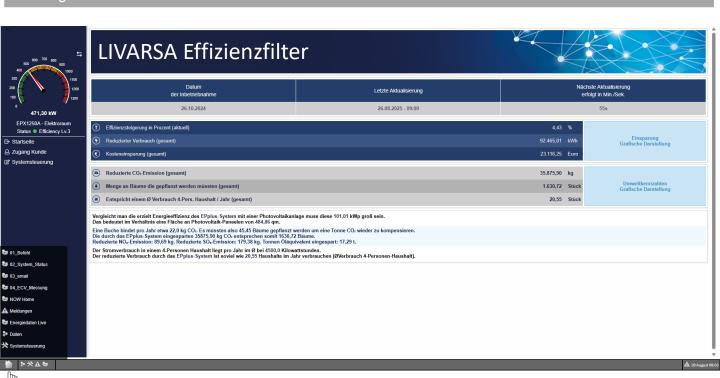
Unipi Gate G110 ist ein programmierbares Ethernet/RS485 Linux IoT-Gateway und Logik-Controller für Industrieautomatisierung, Gebäudemanagementsysteme und andere Automatisierungsprojekte.


Dank ausreichender Rechenleistung und Software-Offenheit eignet sich diese IoT-Plattform als Datenlogger in SCADA- oder MES-Steuerungssystemen oder in Cloud-Diensten in Smart City-, Smart Factory- und IoT/IIoT-Projekten.

Merkmale:

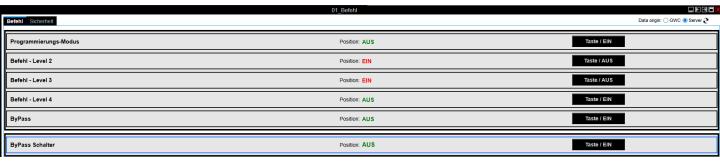
- Quad-Core 600 MHz ARM A53 CPU mit 1 GB RAM
- Onboard 32 GB eMMC-Speicher, erweiterbar per microSD-Karte
- 2x RS485-Schnittstelle
- 2x Ethernet-Ports (1 Gbit und 100 Mbit)
- kompakte Größe, robustes Aluminiumgehäuse mit IP20-Schutz
- Software-Offenheit (basierend auf dem Linux-Betriebssystem)
- wird mit vorinstallierter Node-RED-Software geliefert (kann manuell neu geflasht werden)

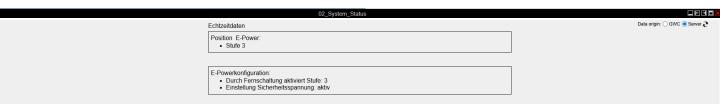



E-NOW VISUALISIERUNG STANDARD

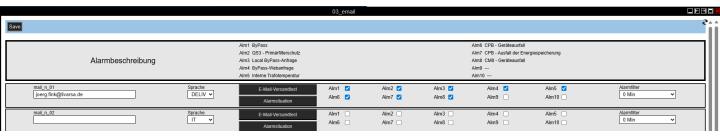
Startseite

Einstieg ins Menü


Menü-Leiste öffnen



Übersicht der einzelnen Menü-Punkte:


01 Befehl

02_System_Status

03 email

04_ECV_Messung

Now Home = Startseite

Meldungen

E-NOW VISUALISIERUNG STANDARD

Energiadatan Liva

UMG801

Filter_IN

Filter_IN_2s Filter_IN_Q1 Filter_IN_Q2

Energiedaten Live: Inputmessung 1Minute, angezeigte Werte

Name	Wert		Datum
V L1-N	240,41 ∨		05/08/2025 12:51:00
V L2-N	240,45 ∨	\triangle	05/08/2025 12:51:00
V L3-N	240,88 ∨	\triangle	05/08/2025 12:51:00
V L1-L2	416,08 V		05/08/2025 12:51:00
V L2-L3	417,12 V		05/08/2025 12:51:00
V L3-L1	416,89 V		05/08/2025 12:51:00
AL1	383,69 A		05/08/2025 12:51:00
AL2	384,86 A		05/08/2025 12:51:00
AL3	379,06 A		05/08/2025 12:51:00
AL4	17,16 A		05/08/2025 12:51:00
W L1	89.091 W		05/08/2025 12:51:00
W L2	89.473 W		05/08/2025 12:51:00
W L3	87.391 W		05/08/2025 12:51:00
VA L1	92.242 VA		05/08/2025 12:51:00
VA L2	92.539 VA		05/08/2025 12:51:00
VA L3	91.311 VA		05/08/2025 12:51:00
VAR L1	23.818 VAR		05/08/2025 12:51:00
VAR L2	23.508 VAR		05/08/2025 12:51:00
VAR L3	26.376 VAR		05/08/2025 12:51:00
PF L1	0,966 PF	\triangle	05/08/2025 12:51:00
PF L2	0,967 PF	\triangle	05/08/2025 12:51:00
PF L3	0,957 PF	\triangle	05/08/2025 12:51:00
W L1-L2-L3	265.955 W	\triangle	05/08/2025 12:51:00
VA L1-L2-L3	276.092 VA	\triangle	05/08/2025 12:51:00
VAR L1-L2-L3	73.702 VAR	\triangle	05/08/2025 12:51:00
Hz	50,0 Hz	\triangle	05/08/2025 12:51:00
kWh L1-L2-L3	887.643,65 kWh		05/08/2025 12:51:00
kWh - L1-L2-L3	0,00 kWh		05/08/2025 12:51:00
kVARh-L L1-L2-L3	295.837,95 kVARh		05/08/2025 12:51:00
kVARh-C L1-L2-L3	1.253,94 kVARh		05/08/2025 12:51:00
THD V1	0,9 %		05/08/2025 12:51:00
THD V2	0,7 %		05/08/2025 12:51:00
THD V3	0,7 %		05/08/2025 12:51:00
THD I1	1,5 %		05/08/2025 12:51:00
THD I2	2,2 %		05/08/2025 12:51:00
THD 13	1,7 %		05/08/2025 12:51:00
THD I4	62,3 %		05/08/2025 12:51:00

Energiedaten Live: Inputmessung 2 Sekunden, angezeigte Werte

Name	Wert		Datum
V L1-N	240,09 V		05/08/2025 13:01:42
V L2-N	240,27 V		05/08/2025 13:01:42
V L3-N	240,55 ∨		05/08/2025 13:01:42
AL1	364,33 A		05/08/2025 13:01:42
AL2	357,37 A		05/08/2025 13:01:42
AL3	358,64 A		05/08/2025 13:01:42
AL4	21,65 A		05/08/2025 13:01:42
W L1-L2-L3	249.332 W		05/08/2025 13:01:42
VA L1-L2-L3	259.606 VA		05/08/2025 13:01:42
VAR L1-L2-L3	63.450 VAR		05/08/2025 13:01:42
kWh L1-L2-L3	887.680,13 kWh		05/08/2025 13:01:42
kWh - L1-L2-L3	0,00 kWh		05/08/2025 13:01:42
kVARh-L L1-L2-L3	295.849,98 kVARh		05/08/2025 13:01:42
kVARh-C L1-L2-L3	1.253,94 kVARh		05/08/2025 13:01:42
THD V1	1,0 %		05/08/2025 13:01:42
THD V2	0,8 %		05/08/2025 13:01:42
THD V3	0,8 %		05/08/2025 13:01:42
THD I1	1,9 %		05/08/2025 13:01:42
THD I2	2,4 %		05/08/2025 13:01:42
THD 13	2,4 %		05/08/2025 13:01:42
THD I4	44,1 %	l _M	05/08/2025 13:01:42

E-NOW VISUALISIERUNG STANDARD

Energiedaten Live

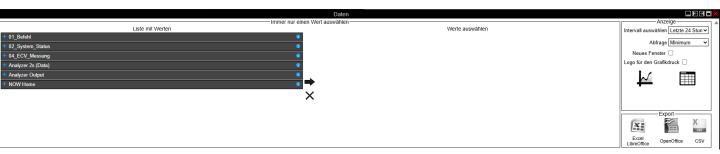
UMG801

Analyzer 2s

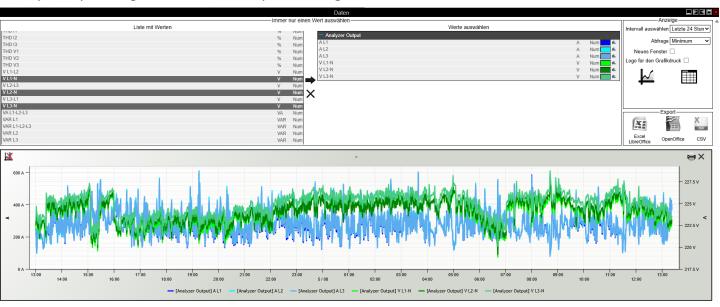
Analyzer Output

Energiedaten Live: Outputmessung 2 Sekunden, angezeigte Werte

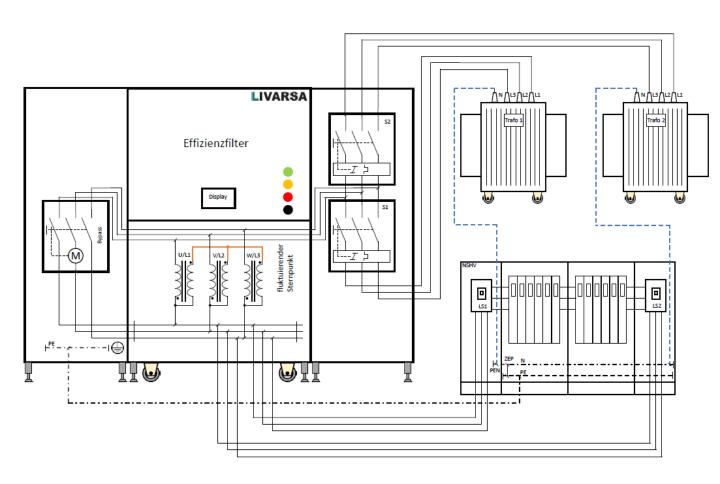
Name	Wert		Datum
V L1-N	223,72 V		05/08/2025 13:13:19
V L2-N	223,89 V		05/08/2025 13:13:19
V L3-N	224,19 V		05/08/2025 13:13:19
kWh L1-L2-L3	880.846,9 kWh	\simeq	05/08/2025 13:13:19
kVARh L1-L2-L3	256.438,0 kVARh	\simeq	05/08/2025 13:13:19
W L1-L2-L3	104.524 W		05/08/2025 13:13:19
VAR L1-L2-L3	14.415 VAR		05/08/2025 13:13:19
PF-I L1-L2-L3	0,991 PF		05/08/2025 13:13:19
PF-C L1-L2-L3	0,000 PF	\simeq	05/08/2025 13:13:19
AL1	163,90 A		05/08/2025 13:13:19
AL2	153,52 A		05/08/2025 13:13:19
AL3	156,55 A		05/08/2025 13:13:19


Energiedaten Live: Outputmessung 1Minute, angezeigte Werte

Name	Wert	Datum
V L1-N	222,45 ∨	05/08/2025 13:14:58
V L2-N	222,66 ∨	05/08/2025 13:14:58
V L3-N	223,12 V	05/08/2025 13:14:58
V L1-L2	384,96 V	05/08/2025 13:14:58
V L2-L3	386,40 V	05/08/2025 13:14:58
V L3-L1	386,12 V	05/08/2025 13:14:58
AL1	305,09 A	05/08/2025 13:14:58
A L2	313,06 A	05/08/2025 13:14:58
AL3	307,09 A	05/08/2025 13:14:58
AN	0,00 A	05/08/2025 13:14:58
W L1	63.542 W	05/08/2025 13:14:58
W L2	65.290 W	05/08/2025 13:14:58
W L3	63.159 W	05/08/2025 13:14:58
VAR L1	23.844 VAR	05/08/2025 13:14:58
VAR L2	24.417 VAR	05/08/2025 13:14:58
VAR L3	26.566 VAR	05/08/2025 13:14:58
PF-I L1	0,936 PF	05/08/2025 13:14:58
PF-C L1	0,000 PF	05/08/2025 13:14:58
PF-I L2	0,937 PF	05/08/2025 13:14:58
PF-C L2	0,000 PF	05/08/2025 13:14:58
PF-I L3	0,922 PF	05/08/2025 13:14:58
PF-C L3	0,000 PF	05/08/2025 13:14:58
W L1-L2-L3	191.990 W	05/08/2025 13:14:58
VA L1-L2-L3	206.056 VA	05/08/2025 13:14:58
VAR L1-L2-L3	74.827 VAR	05/08/2025 13:14:58
PF-I L1-L2-L3	0,932 PF	05/08/2025 13:14:58
PF-C L1-L2-L3	0,000 PF	05/08/2025 13:14:58
Hz	50,0 Hz	05/08/2025 13:14:58
T °C	41,3 °C	05/08/2025 13:15:58
kWh L1-L2-L3	880.856,3 kWh	05/08/2025 13:15:58
kVARh L1-L2-L3	256.441,0 kVARh	05/08/2025 13:15:58
THD V1	1,125 %	05/08/2025 13:15:58
THD V2	0,968 %	05/08/2025 13:15:58
THD V3	0,989 %	05/08/2025 13:15:58
THD I1	2,434 %	05/08/2025 13:15:58
THD I2	2,641 %	05/08/2025 13:15:58
THD I3	2,295 %	05/08/2025 13:15:58



Daten, am Beispiel der Outputmessung


Beispiel: Spannung und Strom der Outputmessung, letzte 24 Stunden, 1 Minute

Beispiel: Spannung und Strom der Outputmessung, letzte 24 Stunden, 2 Sekunden

LIVARSA AG Tunnelstrasse 5 (CH) 2540 Grenchen Tel. +41(0)32 517 95 05 info@livarsa.ch

LIVARSA GmbH Im Fruchtfeld 17 (D) 77791 Berghaupten Tel. +49(0)7803 922 89 72 info@livarsa.de Vertriebs- / Elektroinstallationspartner